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Abstract
We study the interplay of quantum impurity, and collective spinon and holon
dynamics in Zn doped high-Tc cuprates in the normal state. The two-
dimensional t–t ′–J models with one Zn impurity and a small amount of Zn
impurity are investigated within a numerical method based on the double-
time Green function theory. We study the inhomogeneities of the holon
density and antiferromagnetic correlation background in cases with different
Zn concentrations, and obtain that doped holes tend to assemble around the
Zn impurity with their mobility being reduced. Therefore a bound state of the
holon is formed around the nonmagnetic Zn impurity with the effect helping
Zn to introduce local antiferromagnetism around itself. The incommensurate
peaks we obtained in the spin structure factor indicate that Zn impurities have
effects on mixing the q = (π, π) and 0 components in spin excitations.

The effects of divalent transition metal Zn substituted for Cu in the CuO2 plane present much
valuable information in understanding the mechanism of high temperature superconductors.
Zn2+ has a closed d shell with spin s = 0, and acts as a very strong scattering centre. As a result,
the spin configurations and the electronic structures around the nonmagnetic impurity Zn are
strongly disrupted in both the normal state and superconducting state. Below Tc, there have
been many experimental [1–5] and theoretical [6–10] investigations to discover how the d-
wave superconductivity is destroyed and what the microscopic mechanism behind it is. As the
normal state properties are more fundamental, some experimental [11–15] and theoretical [16–
18] works have been done to study the effects of nonmagnetic impurity Zn on the properties of
the normal state. It is believed that these studies are of great help in understanding the peculiar
behaviours of the normal state. Moreover, they shed light on the recent striking issue of the
normal state pseudogap [19, 20]. So far, there has been no clear picture of how the impurity
interplays with the strong correlation background. It still remains unanswered why the Zn
impurity produced very strong scatter and how the impurity band forms in real space.

In this paper, we perform numerical calculations to study the effects of Zn impurity
on its surrounding Cu ions in the normal state. We want to find out how the Zn impurity
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influences the hole distribution and the AF correlation background, which may bring about a
better understanding of the fundamental relationship between spin and hole. We start from the
two-dimensional (2D) t–t ′–J model and use fermion-spin theory [21]. Fermion-spin theory
is based on the charge–spin separation, in which the single occupied constraint of the t–t ′–J
model can be treated properly even in the mean field approximation. Within an improved
Green function theory [22], we perform numerical calculations for cases with only one Zn
impurity and a small amount of Zn impurity, and the effect of the Zn concentration on some
properties of the normal state are discussed.

The essential physics of high-Tc cuprates is well described by the t–J model on a square
lattice. Under the condition that Zn substitutes Cu in the CuO2 plane, we can model the Zn
impurity as a vacant site, which has no coupling with the surrounding Cu sites. We add the
next-nearest-neighbour hopping term in our model to reproduce the realistic band structure,
and start our study from the following Hamiltonian:

H = −t
∑

〈i, j〉�=l,σ

(C†
iσ C jσ + h.c.) − t ′ ∑

〈i,i ′ 〉�=l,σ

(C†
iσ Ci ′σ + h.c.)

− µ
∑
i,σ

C†
iσ Ciσ + J

∑
〈i, j〉�=l

Si · S j , (1)

where 〈i, j〉 and 〈i, i ′〉 mean the summations over nearest-neighbour (NN) and next-nearest-
neighbour (NNN) pairs, respectively, and l represents the site occupied by the Zn impurity.
In our model the direct hopping among a Zn impurity and its surrounding Cu sites is
forbidden. In addition, to eliminate the doubly occupied sites of the Cu ion, we introduce
the constraint

∑
σ C†

iσ Ciσ � 1 for each Cu site. Also we introduce
∑

σ C†
lσ Clσ = 2 for

the Zn2+ ion since it has a closed d shell. Therefore, the total number of electrons satisfies∑
iσ C†

iσ Ciσ = N−Nh+NZn with Nh and NZn representing the number of holes and Zn impurity,
respectively. As the strong electron correlation manifests itself by the local constraint, the key
issue is how to treat the constraint properly.

Here we study the t–t ′–J model within the fermion-spin theory [21] based on the charge–
spin separation. We introduce Ci↑ = h†

i S−
i and Ci↓ = h†

i S+
i , where the spinless fermion

operator hi describes the charge (holon) degrees of freedom, while the pseudospin operator Si

describes the spin (spinon) degrees of freedom. Thus the low energy behaviour of the t–t ′–J
model (1) can be written as

H = −t
∑

〈i, j〉�=l

(hi h
†
j + h j h

†
i )(S+

i S−
j + S−

i S+
j ) − t ′ ∑

〈i,i ′ 〉�=l

(hi h
†
i ′ + hi ′ h†

i )(S+
i S−

i ′ + S−
i S+

i ′ )

+ µ
∑
i �=l

h†
i hi +

∑
〈i, j〉�=l

J eff
i, j Si · S j , (2)

where J eff
i, j = [(1 − nh

i )(1 − nh
j ) − φ2

i, j ]J with nh
i representing the hole concentration at site

i and φi, j = 〈h†
i h j 〉 being the order parameter of the holon. Here we also introduce spinon

correlation functions χi j = 〈S−
i S+

j 〉 and χ z
i j = 〈Sz

i Sz
j 〉.

We introduce three double-time Green functions
Gh(i − j, τ − τ ′) = −iθ(τ − τ ′)〈[hi (τ ); h+

j (τ
′)]〉 ≡ 〈〈hi (τ ); h+

j (τ
′)〉〉

Ds(i − j, τ − τ ′) = −iθ(τ − τ ′)〈[S+
i ; S−

j (τ ′)]〉 ≡ 〈〈S+
i (τ ); S−

j (τ ′)〉〉
Dz

s (i − j, τ − τ ′) = −iθ(τ − τ ′)〈[Sz
i ; Sz

j (τ
′)]〉 ≡ 〈〈Sz

i (τ ); Sz
j (τ

′)〉〉,
(3)

where Gh describes the behaviours of the holon, and Ds and Dz
s describe the behaviours of the

spinon. Since the lattice translational invariance is not presented in cases with Zn impurities,we
evaluate the equations of motion of the above Green functions in real space. The double-time
Green function 〈〈A; B〉〉 satisfies

ω〈〈A; B〉〉ω = 〈[A, B]∓〉ω + 〈〈[A, H ]; B〉〉ω, (4)
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thus we could obtain the equations of motion of Gh

(ω − µ)Gh(i − j)ω = 2t
∑

η

χi,i+ηGh(i + η − j)ω + δ(i − j)

× 2t ′ ∑
τ

χi,i+τ Gh(i + τ − j)ω. (5)

We introduce G̃h, a N2 × N2 elements matrix, to express the holon Green functions for a
square lattice with N × N sites. We could rewrite equation (5) as

(ω − µ)G̃h − h̃G̃h = Ĩ , (6)

where matrix h̃ is decided by the NN and NNN spinon correlation functions, and Ĩ is an identity
matrix.

Based on equations (3) and (4), we also obtain the equations of motion of spinon Green
functions Ds and Dz

s

ωDs(i − j)ω = 2
∑

η

J eff
i,i+η{εi,i+η F1(i, i + η; j)ω − F1(i + η, i ; j)ω}

+ 8t ′ ∑
τ

φi,i+τ F1(i, i + τ ; j)ω

ωDz
s (i − j)ω =

∑
η

J eff
i,i+ηεi,i+η{F2(i, i + η; j)ω − F2(i + η, i ; j)ω}

+ 4t ′ ∑
τ

φi,i+τ {F2(i, i + τ ; j)ω − F2(i + τ, i ; j)ω},

(7)

where εi,i+η = 1 + 4tφi,i+η

J eff
i,i+η

. F1 and F2 are the second-order spinon Green functions which are

defined as

F1(i, l; j)ω = 〈〈Sz
i S+

l ; S−
j 〉〉ω

F2(i, l; j)ω = 〈〈S+
i S−

l ; Sz
j 〉〉ω.

(8)

Going a step further, we establish the equations of motion of the second-order spinon Green
functions

ωF1(i, l; j)ω = 2χ z
i,lδ(l − j) − χi,lδ(i − j)

+

〈〈{∑
η

[2J eff
l,l+η(εl,l+η Sz

i Sz
l S+

l+η − Sz
i Sz

l+η S+
l )

+ J eff
i,i+ηεi,i+η(S+

i S−
i+ηS+

l − S+
i+ηS−

i S+
l )]

+ 4t ′ ∑
τ

[φi,i+τ (S+
i S−

i+τ S+
l − S+

i+τ S−
i S+

l )

+ 2φl,l+τ Sz
i Sz

l S+
l+τ ]

}
; S−

j

〉〉
ω

ωF2(i, l; j)ω = χi,lδ(l − j) − χi,lδ(i − j)

+

〈〈{∑
η

[2J eff
l,l+η(S+

i S−
l Sz

l+η − εl,l+η S+
i S−

l+η Sz
l )

+ 2J eff
i,i+η(εi,i+ηS+

i+η S−
l Sz

i − S+
i S−

l Sz
i+η)]

+ 8t ′ ∑
τ

[φi,i+τ S+
i+τ S−

l Sz
i − φl,l+τ S+

i S−
l+τ Sz

l ]

}
; Sz

j

〉〉
ω

.

(9)

To the third-order spinon Green functions in the right-hand side of equation (9), we perform
the improved decoupling scheme as described in [22], for example

〈〈Sz
i Sz

l S+
l+η; S−

j 〉〉 → αi 〈Sz
i Sz

l 〉αl〈〈S+
l+η; S−

j 〉〉. (10)
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Therefore, the second-order spinon Green functions F1 and F2 can be expressed by the Green
functions Ds and Dz

s as

ωF1(i, l; j)ω = �0
1 + �1

1 D(i − j) +
∑

η

{�2
1 D(i + η − j) + �3

1 D(l + η − j)}

+ �4
1 D(l − j) +

∑
τ

{�5
1 D(i + τ − j) + �6

1 D(l + τ − j)}
ωF2(i, l; j)ω = �0

2 + �1
2 Dz(i − j) +

∑
η

{�2
2 Dz(i + η − j) + �3

2 Dz(l + η − j)}
+ �4

2 Dz(l − j),

(11)

where

�0
1 = 2χ z

i,lδ(l − j) − χi,lδ(i − j),

�1
1 =

∑
η

J eff
i,i+ηεi,i+ηαi+ηχi+η,lαl + 4t ′ ∑

τ

φi,i+τ αi+τ χi+τ,lαl ,

�2
1 = −J eff

i,i+ηεi,i+ηαiχi,lαl ,

�3
1 = 2J eff

l,l+ηεl,l+ηαiχ
z
i,lαl ,

�4
1 = −2

∑
η

J eff
l,l+ηαiχ

z
i,l+ηαl+η,

�5
1 = −4t ′φi,i+τ αiχi,lαl ,

�6
1 = 8t ′φl,l+τ αiχ

z
i,lαl,

�0
2 = χi,lδ(l − j) − χi,lδ(i − j),

�1
2 = 2

∑
η

J eff
i,i+ηεi,i+ηβi+ηχi+η,lβl + 8t ′ ∑

τ

φi,i+τ βi+τχi+τ,lβl,

�2
2 = −2J eff

i,i+ηβiχi,lβl,

�3
2 = 2J eff

l,l+ηβiχi,lβl

and

�4
2 = −2

∑
η

J eff
l,l+ηεl,l+ηβiχi,l+ηβl+η − 8t ′ ∑

τ

φl,l+τ βiχi,l+τ βl+τ .

We also introduce two N2 × N2 elements matrices D̃s and D̃z
s to express the spinon Green

functions. Based on equations (7) and (11), we could obtain that

ω2 D̃s − S̃ D̃s = C̃s

ω2 D̃z
s − S̃z D̃z

s = C̃ z
s ,

(12)

where matrices S̃, S̃z , C̃s and C̃ z
s are decided by the density of the holon ni and the spin

correlation functions.
We establish the self-consistent equations based on equations (6) and (12) to determine the

correlation functions of the holon and the spinon, and also the vertex correction parameters.
Under the periodic boundary conditions, we have performed numerical calculations for 16×16
and 20 × 20 lattices with different Zn concentrations. Based on the experimental results of
BSCCO near optimal doping [1, 9], the parameters of the t–t ′–J model are taken as t/J = 2.5
and t ′/t = −0.4 in our calculations.

Firstly, we study the 20 × 20 lattice with only one Zn impurity in the optimally doping
region (δh = 0.15). The spacial distribution of holon density is calculated and our numerical
results are shown in figure 1. We find that the holon density closest to the Zn impurity oscillates
strongly, and the fluctuation diminishes rapidly away from the Zn impurity. The maximum
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Figure 1. The distribution of holon density in a 20 × 20 lattice with only one Zn impurity.

density is obtained at sites two lattice distances away from the Zn impurity, and is about 15%
higher than the minimum density. Our numerical results suggest that doped holes form a local
region around the Zn impurity, whose size is about eight lattice cells, as shown in figure 1.
We also obtain that the magnetic modification introduced by Zn is mainly in the vicinity of
the Zn impurity. The NN correlation functions near the isolated nonmagnetic impurity in the
undoped case have been discussed carefully in [22]. We have found that Zn impurity strongly
modifies the spin excitations, especially the magnetic properties of the neighbour Cu. As a
result, the AF correlation functions at the bonds close to the impurities are enhanced. In the
optimally doped region, we also obtain that the Zn impurity enhances the NN AF correlation
functions of spinons close to it. Moreover, the doped holes have the effect of strengthening the
AF correlations near the Zn impurity. The 63Cu NMR study of YBa2(Cu0.99Zn0.01)3O6.7 also
finds that the AF correlations are enhanced, not destroyed, around Zn impurities [13]. Since
the quantum fluctuation of spinons close to the nonmagnetic impurity is reduced obviously,
we can divided the system into a strong AF correlation region and a weak AF correlation
region. The tendency of doped holes to assemble around the Zn impurity could rationalize the
anomalous charge localization effect, and the mobility of those holons close to the Zn impurity
could also be reduced. Therefore, a bound state of the holon [23] is formed around the Zn
impurity. The bound state of the impurity in the normal state has also been predicted by the
self-consistent T matrix approach [18].

We also study the cases with several Zn impurities in the optimally doped regime, and
find that the holes play different roles in the strong AF correlation regions and the weak AF
correlation regions. We find that in different regions, that is in the strong AF correlation region
and the weak AF correlation region, the hole plays different roles. Our numerical results show
that the AF correlations of bonds far from the Zn impurity reduce remarkably as the hole is
added into the systems. On the contrary, the bound state of the holon has the effect of enhancing
the AF correlations around the Zn impurity, and helps Zn to introduce local antiferromagnetism
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Figure 2. The density of states of the holon at δZn = 0.0 (dotted curve), 0.01 (dashed curve) and
0.04 (solid curve).

around itself. As the Zn concentration increases, the CuO2 plane becomes a inhomogeneous
mixture of strong AF correlation regions and weak AF correlation regions, and the doped holes
tend to assemble at the strong AF correlation regions.

We show the density of states of the holon in cases with several Zn impurities in figure 2.
Jung et al [24] have examined some samples and prove that Zn is uniformly distributed. In some
configurations when Zn is uniformly distributed, our calculations show that due to the strong
coupling between impurity and the conduction band, the width of the holon band decreases
as Zn concentration increases. We find that the inhomogeneity of the spinon background
increases the density of states of the holon near the fermi surface, and a resonance peak
of impurity states is found to get broader and stronger as the Zn concentration increases.
Inelastic neutron scattering study for the optimal doped La1.85Sr0.15Cu1−yZnyO4 indicates that
a new in-gap Zn impurity state is introduced at low temperature [25]. Nonmagnetic defect
structures at the surface have also been found to create localized low-energy excitations in their
immediate vicinity in Bi2Sr2CaCu2O8 by performing low-temperature tunnelling spectroscopy
measurements with a scanning tunnelling microscope [4]. Our calculations show that the
impurity state can survive above Tc, which is in agreement with theoretical prediction [18] as
well.

To study the effect of the Zn impurity on the spin background around it, we introduce the
spin structure factor

Si (k) =
∑

j

Sz
i Sz

j e
k·(i−j). (13)

Here i represents the Cu site around the Zn impurity. The Zn impurity is a scatter which has
a strong effect on the AF correlation background [26]. As the Zn concentration increases, the
CuO2 plane becomes an inhomogeneous mixture of strong AF correlation regions and weak
AF correlation regions. In figure 3, the numerical results of the NN Cu sites around the Zn
impurity are shown for 16 × 16 lattices with different Zn concentrations. We obtain that, in
the pure case and Zn lightly doped case (δZn � 0.01), the spin excitations are dominated by
a magnetic resonance peak located at QAF = (π, π). As the Zn concentration increases, this
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Figure 3. The spin structure factor of the nearest neighbour Cu sites around the Zn impurity for
16 × 16 lattices with different Zn concentrations.

peak decreases and there appear two second-high incommensurate peaks as shown in figure 3,
which result from the mixing of q = (π, π), (π, 0) and 0 components in spin excitations
introduced by the strong impurity scattering. In Bulut’s study of susceptibility of Zn doped
high-Tc superconductors, similar behaviours are also obtained [17]. In addition, we find that
the distances of the incommensurate peaks from q = (π, π) increase with doping, and these
peaks become broad and weak in amplitude with increasing of Zn concentration. Meanwhile,
as a result of increasing the disorder introduced by the Zn substitution on the Cu sites, the
peak at q = (π, π) decreases gradually as the Zn concentration increases, and disappears
when δZn � 0.1. Thus the result is consistent with experimental results of Zn-doped high-Tc

cuprates [11].
In summary, we have studied the interplay between quantum impurities, and collective

spinon and holon dynamics in Zn-doped cuprate in the normal state. Within a numerical method
based on the Green function theory, the inhomogeneities of the holon density distribution and
the antiferromagnetic correlation background in the two-dimensional t–t ′–J model with Zn
impurities are investigated. We obtain the real space shape of the bound state of the holon
surrounding the nonmagnetic Zn impurity. We also find that the doped holes help Zn to
introduce local antiferromagnetism around itself. In the cases with a small amount of Zn
impurity, the influence of the Zn impurity on the antiferromagnetic correlation background is
studied. The appearance of incommensurate peaks in the spin structure factor indicates that
the Zn impurity is a strong scatter centre, which has an effect on mixing the q = (π, π), (π, 0)

and 0 components in spin excitations.
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